SIMPLE OLS REGRESSION, PART II: GOODNESS OF FIT

Richard Lee Rogers
Last Update: February 14, 2016

Example

Variables Entered/Removed ${ }^{\text {a }}$

Model	Variables Entered	Variables Removed	Method
1	Poverty Rate $^{\text {b }}$		Enter

a. Dependent Variable: Log of Violent Crime

Rate
b. All requested variables entered.

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.391^{\mathrm{a}}$.152	.135	.36130

a. Predictors: (Constant), Poverty Rate

a. Dependent Variable: Log of Violent Crime Rate
b. Predictors: (Constant), Poverty Rate

Coefficients ${ }^{\text {a }}$

Model		Unstandardized Coefficients		Standardized Coefficients Beta	t	Sig.
		B	Std. Error			
1	(Constant)	5.097	. 243		20.981	. 000
	Poverty Rate	. 046	. 016	. 391	2.939	. 005

Scatterplot of the Relationship

Model Summary and ANOVA Tables

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.391^{\mathrm{a}}$.152	.135	.36130

a. Predictors: (Constant), Poverty Rate

$\text { ANOVA }{ }^{\text {a }}$					
Model	Sum of Squares	df	Mean Square	F	Sig.
1 Regression	1.127	1	1.127	8.637	$.005^{\text {b }}$
Residual	6.266	48	.131		
Total	7.393	49			

a. Dependent Variable. Log of viotent Crime Rate
b. Predictors: (Constant), Poverty Rate

Explaining Sums of Squares

$$
\bar{y}=3
$$

Explaining Sums of Squares

$$
\bar{y}=3
$$

$$
(1,1)
$$

$$
\mathrm{y}=1
$$

Explaining Sums of Squares

Sum of Squares

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.391^{\mathrm{a}}$.152	.135	.36130

a. Predictors: (Constant), Poverty Rate

$\text { ANOVA }{ }^{a}$					
Model	Sum of Squares	df	Mean Square	F	Sig.
1 Regression	1.127	1	1.127	8.637	.005 ${ }^{\text {b }}$
Residual	6.266	48	. 131		
Total	7.393	49			

a. Dependent Variable. Log vo vionent Crime Rate
b. Predictors: (Constant), Poverty Rate

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.391^{\mathrm{a}}$.152	.135	.36130

a. Predictors: (Constant), Poverty Rate

ANOVA ${ }^{\text {a }}$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	1.127	1	1.127	8.637	$.005^{\text {b }}$
	Residual	6.266	48	.131		
	Total	7.393	49			

a. Dependent Variable: Log of Violent Crime Rate
b. Predictors: (Constant), Poverty Rate

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.391^{\text {a }}$.152	.135	.36130

a. Predictors: (Constant), Poverty Rate

ANOVA ${ }^{\text {a }}$

		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	1.127	1	1.127	8.637	$.005^{\mathrm{b}}$
	Residual	6.266	48	.131		
	Total	7.393	49			

a. Dependent Variable: Log of Violent Crime Rate
b. Predictors: (Constant), Poverty Rate

Adjusted R ${ }^{2}$

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.391^{\mathrm{a}}$.152	.135	.36130

a. Predictors: (Constant), Poverty Rate

$$
\text { Adj. } R^{2}=1-(1-R 2) \frac{n-1}{n-p-1}=R^{2}-\left(1-R^{2}\right) \frac{p}{n-p-1}
$$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	1.127	1	1.127	8.637	$.005^{\mathrm{b}}$
	Residual	6.266	48	.131		
	Total	7.393	49			

a. Dependent Variable: Log of Violent Crime Rate
b. Predictors: (Constant), Poverty Rate

Statistical Significance of the Model

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.391^{\mathrm{a}}$.152	.135	.36130

a. Predictors: (Constant), Poverty Rate

ANOVA ${ }^{\text {a }}$

Model		Sum of Squares		df	Mean Square	F
1	Regression	1.127	1	1.127	8.637	Sig.
	Residual	6.266	48	.131		
	Total	7.393	49			

a. Dependent Variable: Log of Violent Crime Rate
b. Predictors: (Constant), Poverty Rate

Degrees of Freedom

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.391^{\mathrm{a}}$.152	.135	.36130

a. Predictors: (Constant), Poverty Rate

ANOVA ${ }^{\text {a }}$					
Model	Sum of Squares	df	Mean Square	F	Sig.
1 Regression	1.127	1	1.127	8.637	. $005{ }^{\text {b }}$
Residual	6.266	48	.131		
Total	7.393	49			

a. Dependent Variable: Log of Violent Crime Rate
b. Predictors: (Constant), Poverty Rate

Degrees of Freedom

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.391^{\mathrm{a}}$.152	.135	.36130

a. Predictors: (Constant), Poverty Rate

ANOVA ${ }^{\text {a }}$					
Model	Sum of Squares	df	Mean Square	F	Sig.
1 Regression	1.127	1	1.127	8.637	.005 ${ }^{\text {b }}$
Residual	6.266	48	. 131		
Total	7.393	49			

a. Dependent Variable: Log of Violent Crime Rate
b. Predictors: (Constant), Poverty Rate

Mean Square (Mean Square Error)

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.391^{\mathrm{a}}$.152	.135	.36130

a. Predictors: (Constant), Poverty Rate

ANOVA ${ }^{\text {a }}$					
Model	Sum of Squares	df	Mean Square	F	Sig.
1 Regression	1.127	1	1.127	8.637	. $005^{\text {b }}$
Residual	6.266	48	. 131		
Total	7.393	49			

a. Dependent Variable: Log of Violent Crime Rate
b. Predictors: (Constant), Poverty Rate

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.391^{\mathrm{a}}$.152	.135	.36130

a. Predictors: (Constant), Poverty Rate

$$
F=\frac{\text { Regression Mean Square }}{\text { Residual Mean Square }}
$$

ANOVA ${ }^{\text {a }}$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	1.127	1	1.127	8.637	$.005^{\text {b }}$
	Residual	6.266	48	.131		
	Total	7.393	49			

a. Dependent Variable: Log of Violent Crime Rate
b. Predictors: (Constant), Poverty Rate

F-Distribution

Note: This image is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.

Simple OLS Regression

- Simple OLS regression is used when both dependent and independent variables are numeric.
- From beta and the standardized beta, we learn direction and magnitude. The beta coefficients can be tested for their statistical significance.
- We can use the sum of squares to estimate the fit of the model (R^{2}). The fit of the model also has statistical significance.

Simple OLS Regression

- Simple OLS regression is used when both dependent and independent variables are numeric.
- From beta and the standardized beta, we learn direction and magnitude. The beta coefficients can be tested for their statistical significance.
- We can use the sum of squares to estimate the fit of the model (R^{2}). The fit of the model also has statistical significance.

