SIMPLE OLS REGRESSION, PART II: GOODNESS OF FIT

Richard Lee Rogers Last Update: February 14, 2016

Variables Entered/Removed^a

Model	Variables Entered	Variables Removed	Method
1	Poverty Rate ^b		Enter

a. Dependent Variable: Log of Violent Crime Rate

b. All requested variables entered.

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.391 ^a	.152	.135	.36130

a. Predictors: (Constant), Poverty Rate

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	1.127	1	1.127	8.637	.005 ^b
	Residual	6.266	48	.131		
	Total	7.393	49			

a. Dependent Variable: Log of Violent Crime Rate

b. Predictors: (Constant), Poverty Rate

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	5.097	.243		20.981	.000
	Poverty Rate	.046	.016	.391	2.939	.005

Scatterplot of the Relationship

Model Summary and ANOVA Tables

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.391 ^a	.152	.135	.36130

a. Predictors: (Constant), Poverty Rate

	ANOVA ^a									
Model		Sum of Squares	df	Mean Square	F	Sig.				
1	Regression	1.127	1	1.127	8.637	.005 ^b				
	Residual	6.266	48	.131						
	Total	7.393	49							

a. Dependent Variable. Log of Violent Crime Rate

Explaining Sums of Squares

Explaining Sums of Squares

Sum of Squares

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.391 ^a	.152	.135	.36130

a. Predictors: (Constant), Poverty Rate

	ANOVA ^a									
Model		Sum of Squares	df	Mean Square	F	Sig.				
1	Regression	1.127	1	1.127	8.637	.005 ^b				
	Residual	6.266	48	.131						
	Total	7.393	49							

a. Dependent Variable. Log of Violent Crime Rate

a. Predictors: (Constant), Poverty Rate

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	1.127	1	1.127	8.637	.005 ^b
	Residual	6.266	48	.131		
	Total	7.393	49			

a. Dependent Variable: Log of Violent Crime Rate

R

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.391 ^a	.152	.135	.36130

a. Predictors: (Constant), Poverty Rate

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	1.127	1	1.127	8.637	.005 ^b
	Residual	6.266	48	.131		
	Total	7.393	49			

a. Dependent Variable: Log of Violent Crime Rate

Adjusted R²

Model Summary								
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate				
1	.391 ^a	.152	.135	.36130				

a. Predictors: (Constant), Poverty Rate

Adj.
$$R^2 = 1 - (1 - R^2) \frac{n-1}{n-p-1} = R^2 - (1-R^2) \frac{p}{n-p-1}$$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	1.127	1	1.127	8.637	.005 ^b
	Residual	6.266	48	.131		
	Total	7.393	49			

a. Dependent Variable: Log of Violent Crime Rate

Statistical Significance of the Model

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.391ª	.152	.135	.36130

a. Predictors: (Constant), Poverty Rate

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	1.127	1	1.127	8.637	.005 ^b
	Residual	6.266	48	.131		
	Total	7.393	49			

a. Dependent Variable: Log of Violent Crime Rate

Degrees of Freedom

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.391 ^a	.152	.135	.36130

a. Predictors: (Constant), Poverty Rate

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	1.127	1	1.127	8.637	.005 ^b
	Residual	6.266	48	.131		
	Total	7.393	49			

a. Dependent Variable: Log of Violent Crime Rate

Degrees of Freedom

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.391ª	.152	.135	.36130

a. Predictors: (Constant), Poverty Rate

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	1.127	1	1.127	8.637	.005 ^b
	Residual	6.266	48	.131		
	Total	7.393	49			

a. Dependent Variable: Log of Violent Crime Rate

Mean Square (Mean Square Error)

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.391 ^a	.152	.135	.36130

a. Predictors: (Constant), Poverty Rate

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	1.127	1	1.127	8.637	.005 ^b
	Residual	6.266	48	.131		
	Total	7.393	49			

a. Dependent Variable: Log of Violent Crime Rate

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.391 ^a	.152	.135	.36130

a. Predictors: (Constant), Poverty Rate

$\mathbf{F} = \frac{\text{Regression Mean Square}}{\text{Residual Mean Square}}$

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	1.127	1	1.127	8.637	.005 ^b
	Residual	6.266	48	.131		
	Total	7.393	49			

a. Dependent Variable: Log of Violent Crime Rate

F-Distribution

Note: This image is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.

Simple OLS Regression

- Simple OLS regression is used when both dependent and independent variables are numeric.
- From beta and the standardized beta, we learn direction and magnitude. The beta coefficients can be tested for their statistical significance.
- We can use the sum of squares to estimate the fit of the model (R²). The fit of the model also has statistical significance.

Simple OLS Regression

- Simple OLS regression is used when both dependent and independent variables are numeric.
- From beta and the standardized beta, we learn direction and magnitude. The beta coefficients can be tested for their statistical significance.
- We can use the sum of squares to estimate the fit of the model (R²). The fit of the model also has statistical significance.