AN INTRODUCTION TO THE GENERAL LINEAR MODEL

Richard Lee Rogers

About GLM

- Widely used in multivariate statistics
- At least four additional videos in this series are about using GLM to determine relationships
- Does not include development of diagnostic techniques and corrections based on diagnostics
- Does not include the rise of classes of statistics to correct for specific situations that GLM does not handle well
- All four elements of an inferential statistic present: direction, magnitude, significance, performance of the model

Log of Violent Crime Rate and Poverty Rate

Log of Violent Crime Rate and Poverty Rate

Scatterplot with Line

The Equation of a Line

$$
y=m x+b
$$

The Equation of a Line

$y=m x+b$
$(x, y)=$ coordinates of a point along the line

$$
\mathrm{m}=\text { slope }
$$

b = y-intercept

Finding a Line

Finding a Line

Finding a Line

Finding a Line

$$
\begin{aligned}
& \frac{y}{2}=m x+b \\
& \frac{6}{2}=\frac{3}{2}+\frac{3}{2}=b+b \\
& \frac{3}{2}=b \\
& y=\frac{\Delta y}{\Delta x}=\frac{y 1-y 2}{x 1-x 2}=\frac{2-3}{1-3}=\frac{-1}{-2}=\frac{1}{2} \\
& y=m x+b=\frac{1}{2} x+\frac{3}{2}
\end{aligned}
$$

The Equation of A Line in Statistics

$$
y=m x+b
$$

m = slope
$x=y$-intercept

The Equation of A Line in Statistics

$$
y=m x+b
$$

$$
y=b+m x
$$

$$
\mathrm{m}=\text { slope }
$$

$\mathrm{m}=$ slope
$x=y$-intercept

The Equation of A Line in Statistics

$$
y=m x+b \quad B=\text { slope }
$$

$$
y=b+m x
$$

$$
\alpha=y \text {-intercept }
$$

$$
\hat{y}=y \text {-hat }=\text { predicted value of } y
$$

$$
\hat{y}=\alpha+B x
$$

The Concept

The Equation of A Line in Statistics

$$
\begin{array}{ll}
y=m x+b & b=\text { slope } \\
y=b+m x & a=y \text {-intercept } \\
\hat{y}=\alpha+B x & \hat{y}=y \text {-hat = predicted value of } y \\
\hat{y}+o-\alpha+B y+0 & e=\text { error }
\end{array}
$$

The Equation of A Line in Statistics

$$
\begin{array}{ll}
y=m x+b & b=\text { slope } \\
y=b+m x & a=y \text {-intercept }
\end{array}
$$

$$
\hat{y}=y \text {-hat }=\text { predicted value of } y
$$

$$
\hat{y}=\alpha+B x
$$

e = error

$$
y=\alpha+B x+e
$$

The Equation of A Line in Statistics

$y=m x+b$
$y=b+m x$
$\hat{y}=\alpha+B x$
$\hat{y}+e=\alpha+B x+e \quad e=$ error
$\hat{y}+e=\alpha+B x+e$
$\hat{y}=B_{o}+B_{1} x$
$y=B_{o}+B_{1} x_{1}+e$
$B_{1}=$ slope

B or $B_{0}=y$-intercept
$\hat{y}=y$-hat $=$ predicted value of y

GLM Assumptions

- The dependent variable is numeric (most of the time)

GLM Assumptions

- The dependent variable is numeric (most of the time)
- Numeric variables have normal distributions

GLM Assumptions

- The dependent variable is numeric (most of the time)
- Numeric variables have normal distributions
- Error terms are homoskedastic

GLM Assumptions

- The dependent variable is numeric (most of the time)
- Numeric variables have normal distributions
- Error terms are homoskedastic
- If multiple X variables, then the variables are independent

Forms of the General Linear Model

- Simple OLS regression
- Multiple OLS regression
- One-way ANOVA
- Two-way ANOVAs
- ANCOVA

