Multiple OLS Regression

Richard Lee Rogers Last Update: February 14, 2016

Log of Violent Crime Rate on Poverty Rate

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.391 ^a	.152	.135	.36130

a. Predictors: (Constant), Poverty Rate

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	1.127	1	1.127	8.637	.005 ^b
	Residual	6.266	48	.131		
	Total	7.393	49			

a. Dependent Variable: Log of Violent Crime Rate

b. Predictors: (Constant), Poverty Rate

Coefficients^a

		Unstandardize	d Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	5.097	.243		20.981	.000
	Poverty Rate	.046	.016	.391	2.939	.005

Previous Regression Results

- Equation of the line: $\hat{y} = 5.10 + 0.5$ (poverty rate)
- Moderate positive relationship that was statistically significant (standardized B=.39, p<.01)
- Model explains 15% of the variance (R²=.15, p<.01)

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.415 ^a	.172	.155	.35712

a. Predictors: (Constant), Temperature

Model	Sum of Squares	df	Mean Square	F	Sig.
1 Regression	1.272	1	1.272	9.972	.003 ^b
Residual	6.121	48	.128		
Total	7.393	49			

ANOVA^a

a. Dependent Variable: Log of Violent Crime Rate

b. Predictors: (Constant), Temperature

Coefficients^a

		Unstandardize	d Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	4.834	.309		15.668	.000
	Temperature	.019	.006	.415	3.158	.003

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.415 ^a	.172	.155	.35712

a. Predictors: (Constant), Temperature

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	1.272	1	1.272	9.972	.003 ^b
	Residual	6.121	48	.128		
	Total	7.393	49			

ANOVA^a

a. Dependent Variable: Log of Violent Crime Rate

h Bradistare: (Constant) Temperature

ŷ = 4.83 + .02(temperature)

Coefficients^a

		Unstandardize	d Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	4.834	.309		15.668	.000
	Temperature	.019	.006	.415	3.158	.003

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.415 ^a	.172	.155	.35712

a. Predictors: (Constant), Temperature

Mode	el	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	1.272	1	1.272	9.972	.003 ^b
	Residual	6.121	48	.128		
	Total	7.393	49			

ANOVA^a

a. Dependent Variable: Log of Violent Crime Rate

h Bradiatara: (Canatant) Tamparature

ŷ = 4.83 + .02(temperature)

moderate + positive

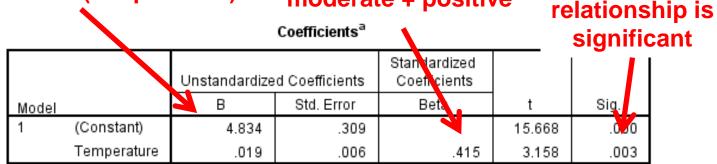
			Coefficients ^a			
		Unstandardize	d Coefficients	Standardized Coefficients		
Model		В	Std. Error	Bet	t	Sig.
1	(Constant)	4.834	.309		15.668	.000
	Temperature	.019	.006	.415	3.158	.003

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.415 ^a	.172	.155	.35712

a. Predictors: (Constant), Temperature

	Model		Sum of Squares	df	Mean Square	F	Sig.
ſ	1	Regression	1.272	1	1.272	9.972	.003 ^b
I		Residual	6.121	48	.128		
l		Total	7.393	49			


ANOVA^a

a. Dependent Variable: Log of Violent Crime Rate

h Bradiatara: (Constant) Tamparature

ŷ = 4.83 + .02(temperature)

moderate + positive

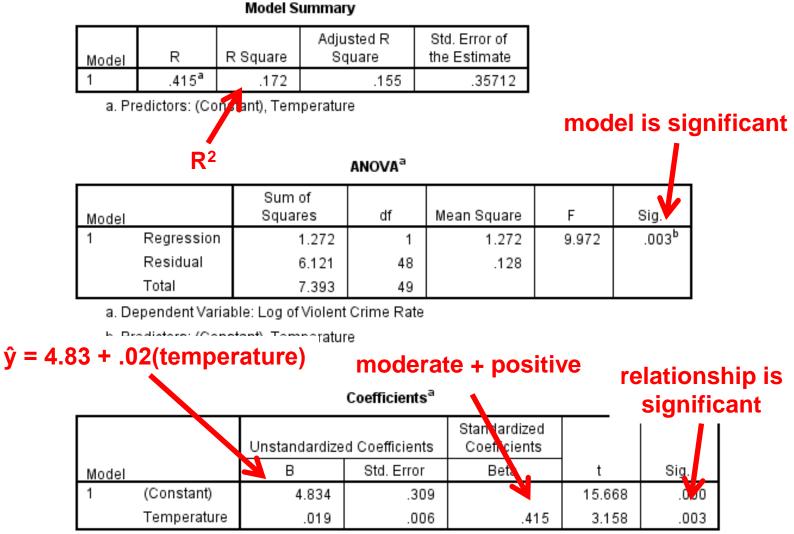
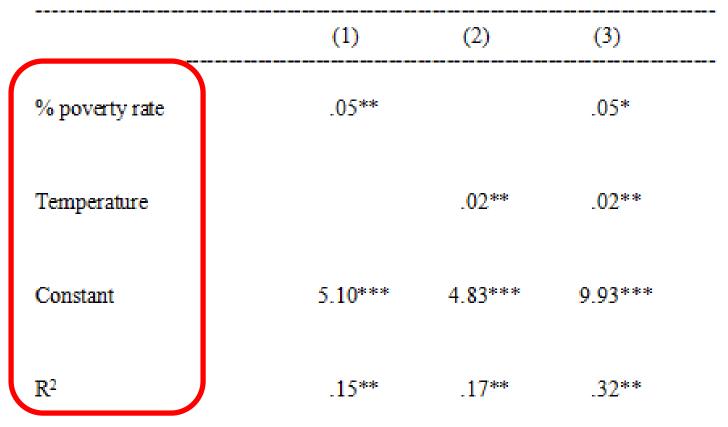
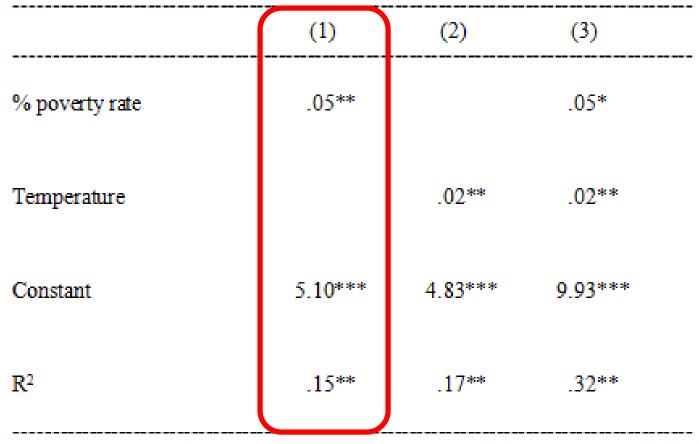



Table 3

OLS Regression Results for Log of the Violent Crime Rate (N=50) (1) (2) (3) % poverty rate .05** .05* .02** .02** Temperature 5.10*** 4.83*** 9.93*** Constant .17** \mathbb{R}^2 .15** 32**

Note: t p<.10 * p<.05 **p<.01 ***p<.001

Table 3



OLS Regression Results for Log of the Violent Crime Rate (N=50)

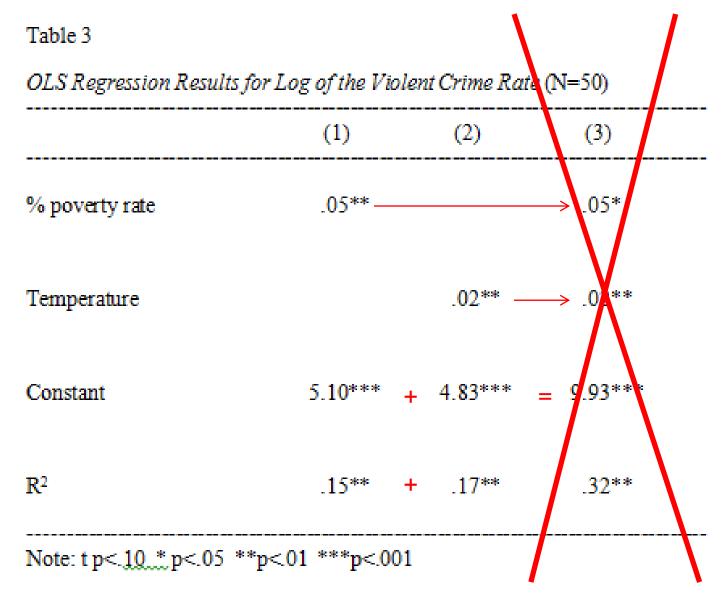
Note: t p<.10 * p<.05 **p<01 ***p<.001

Table 3

OLS Regression Results for Log of the Violent Crime Rate (N=50)

Note: t p<.10 * p<.05 **p<.01 ***p<.001

Table 3


	(1)	(2)	(3)
% poverty rate	.05**		.05*
Temperature		.02**	.02**
Constant	5.10***	4.83***	9.93***
R ²	.15**	.17**	.32**

OLS Regression Results for Log of the Violent Crime Rate (N=50)

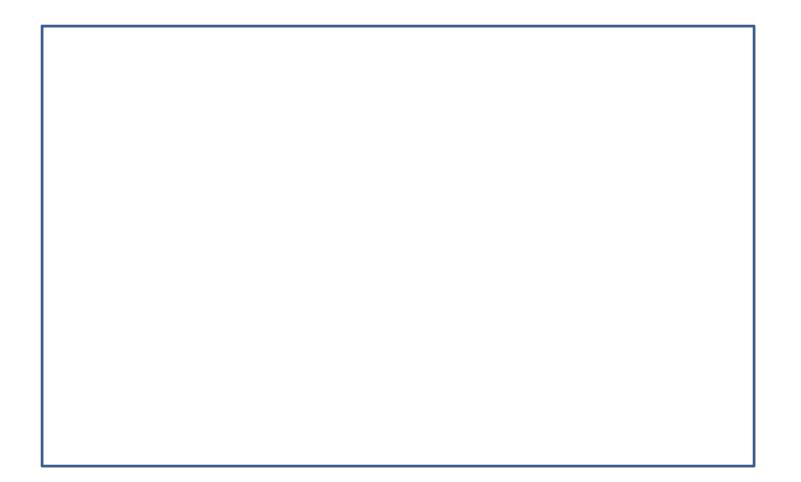
Note: t p<.10 ***p<.05 ***p<.01 ****p<.001

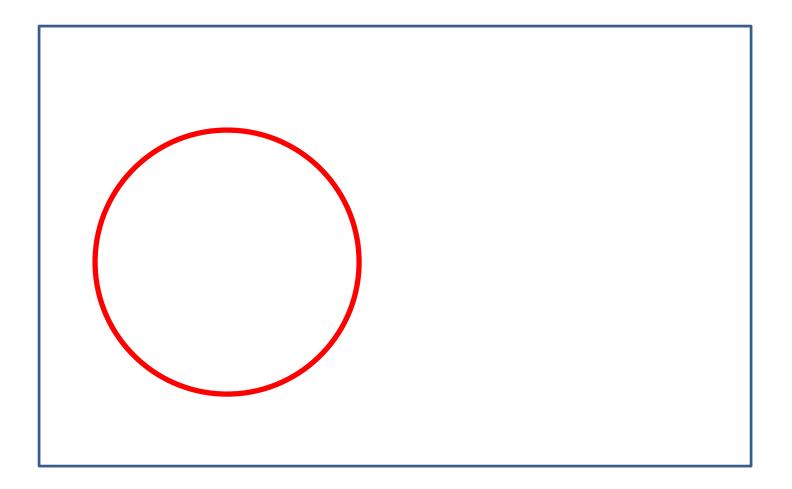
Table 3

OLS Regression Results for Log of the Violent Crime Rate (N=50) (1) (2) (3) % poverty rate $.02^{**} \longrightarrow .02^{**}$ Temperature $5.10^{***} + 4.83^{***} = 9.93^{***}$ Constant .15** + .17** = .32** \mathbb{R}^2 Note: t p<.10 * p<.05 ** p<.01 *** p<.001

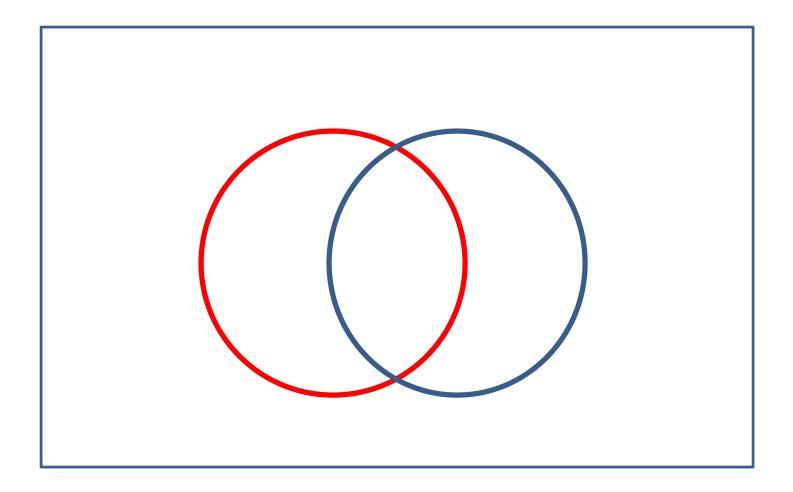
Multiple Regression

One dependent and two or more independent variables:

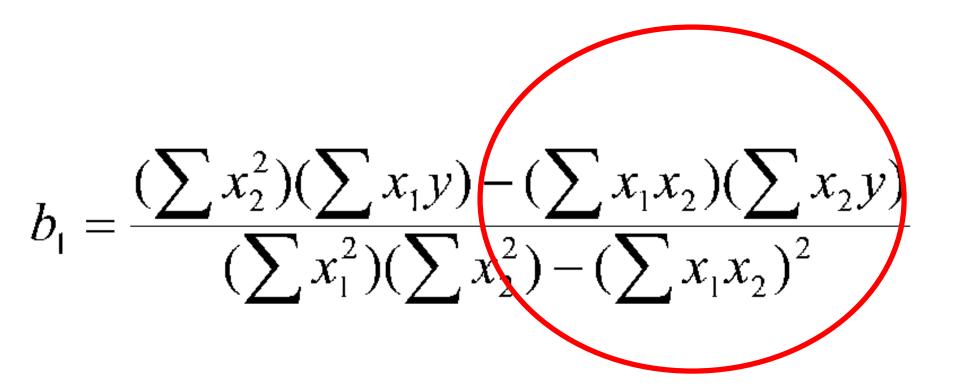

 $\hat{y} = \beta_0 + \beta_1 x + \beta_2 x$ $y = \beta_0 + \beta_1 x + \beta_2 x + e$

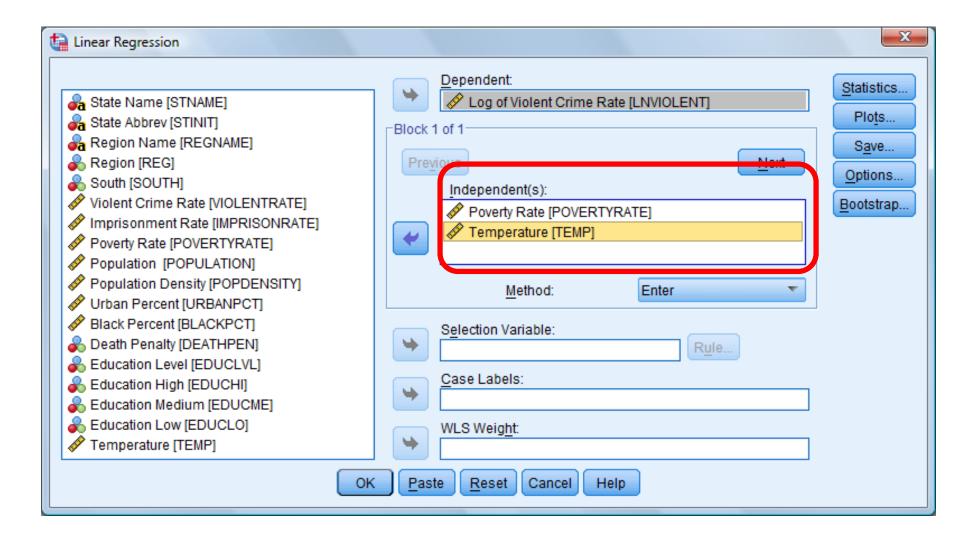

Correlation Matrix

Correlations


		Log of Violent Crime Rate	Poverty Rate	Temperature
Log of Violent Crime Rate	Pearson Correlation	1	.391 **	.415 ^{**}
	Sig. (2-tailed)		.005	.003
	Ν	50	50	50
Poverty Rate	Pearson Correlation	.391 ື	1	.569 ^{""}
	Sig. (2-tailed)	.005		.000
	Ν	50	50	50
Temperature	Pearson Correlation	.415	.569"	1
	Sig. (2-tailed)	.003	.000	
	Ν	50	50	50

**. Correlation is significant at the 0.01 level (2-tailed).





Adjusting for the Overlap

Analyze > Regression > Linear

Multiple Regression Output

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.455 ^a	.207	.174	.35312

a. Predictors: (Constant), Temperature, Poverty Rate

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	1.533	2	.766	6.146	.004 ^b
	Residual	5.860	47	.125		
	Total	7.393	49			

a. Dependent Variable: Log of Violent Crime Rate

b. Predictors: (Constant), Temperature, Poverty Rate

Coefficients^a

		Unstandardize	d Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	4.727	.314		15.057	.000
	Poverty Rate	.027	.019	.228	1.447	.155
	Temperature	.013	.007	.285	1.803	.078

X₁ controlling for X₂

- An effect can stay the same
- An effect can increase in size
- An effect can decrease in size
- An effect can disappear
- An effect can change direction

"Control"

- Multiple regression always has one variable controlling for the effect of another, and vice versa.
- What we call the control variable depends on our intent
 - An independent variable is of theoretical interest (specified in our hypothesis).
 - A control variable is included in the model but does not contribute to the theory.
- The computer does not distinguish between an independent and control variable.

"Control"

- Multiple regression always has one variable controlling for the effect of another, and vice versa.
- What we call the control variable depends on our intent
 - An independent variable is of theoretical interest (specified in our hypothesis).
 - A control variable is included in the model but does not contribute to the theory.
- The computer does not distinguish between an independent and control variable.

Model Summary

Ν	Nodel	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	1	.455 ^a	.207	.174	.35312

a. Predictors: (Constant), Temperature, Poverty Rate

ANOVA^a

Mod	del	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	1.533	2	.766	6.146	.004 ^b
	Residual	5.860	47	.125		
	Total	7.393	49			

a. Dependent Variable: Log of Violent Crime Rate

b. Predictors: (Constant), Temperature, Poverty Rate

$\hat{y} = 4.73 + .03$ (poverty rate) + .01(temperature)

Coefficients^a

		Unstandardize	d Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	4.727	.314		15.057	.000
	Poverty Rate	.027	.019	.228	1.447	.155
	Temperature	.013	.007	.285	1.803	.078

Model Summary

Mo	del	R	R Square	Adjusted R Square	Std. Error of the Estimate
1		.455 ^a	.207	.174	.35312

a. Predictors: (Constant), Temperature, Poverty Rate

ANOVA^a

	Model	Sum of Squares	df	Mean Square	F	Sig.
Γ	1 Regression	1.533	2	.766	6.146	.004 ^b
	Residual	5.860	47	.125		
	Total	7.393	49			

a. Dependent Variable: Log of Violent Crime Rate

b. Predictors: (Constant), Temperature, Poverty Rate

weak +

$\hat{y} = 4.73 + .03$ (poverty rate) + .01(temperature) positive

Coefficients^a

		Unstandardize	d Coefficients	Standardized Coefficients		
Мос	del	В	Std. Error	Beta	t	Sig.
1	(Constant)	4.727	.314		15.057	.000
	Poverty Rate	.027	.019	.228	1.447	.155
	Temperature	.013	.007	.285	1.803	.078

Multiple Regression Output

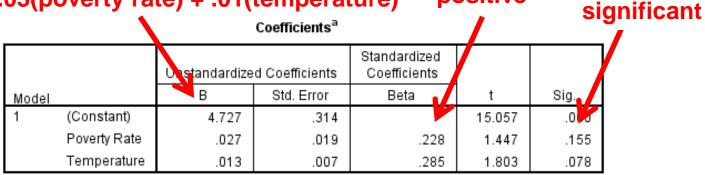
Model Summary

	Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
I	1	.455 ^a	.207	.174	.35312

a. Predictors: (Constant), Temperature, Poverty Rate

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	1.533	2	.766	6.146	.004 ^b
	Residual	5.860	47	.125		
	Total	7.393	49			


a. Dependent Variable: Log of Violent Crime Rate

b. Predictors: (Constant), Temperature, Poverty Rate

weak +

not

$\hat{y} = 4.73 + .03$ (poverty rate) + .01(temperature) positive

_	Model Summary					
	Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	
	1	.455 ^a	.207	.174	.35312	

a. Predictors. (Constant), Temperature, Poverty Rate

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	1.533	2	.766	6.146	.004 ^b
	Residual	5.860	47	.125		
	Total	7.393	49			

a. Dependent Variable: Log of Violent Crime Rate

b. Predictors: (Constant), Temperature, Poverty Rate

weak +

not

$\hat{y} = 4.73 + .03$ (poverty rate) + .01(temperature) positive

significant Coefficients^a Standardized Unstandardized Coefficients Coefficients в Std. Error Beta Sig. Model 1 (Constant) 4.727 .314 15.057 .0 Poverty Rate .027 .228 1.447 .155 .019 Temperature .013 .007 .285 1.803 .078

_	Model Summary					
	Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	
	1	.455 ^a	.207	.174	.35312	

a. Predictors. (Constant), Temperature, Poverty Rate

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	1.533	2	.766	6.146	.004 ^b
	Residual	5.860	47	.125		
	Total	7.393	49			

a. Dependent Variable: Log of Violent Crime Rate

b. Predictors: (Constant), Temperature, Poverty Rate

weak +

not

$\hat{y} = 4.73 + .03$ (poverty rate) + .01(temperature) positive

significant Coefficients^a Standardized Unstandardized Coefficients Coefficients в Std. Error Beta Sig. Model 1 (Constant) 4.727 .314 15.057 .0 Poverty Rate .027 .228 1.447 .155 .019 Temperature .013 .007 .285 1.803 .078

Model Summary						
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate		
1	.455 ^a	.207	.174	.35312		

a. Predictors. (Constant), Temperature, Poverty Rate

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	1.533	2	.766	6.146	.004 ^b
	Residual	5.860	47	.125		
	Total	7.393	49			

a. Dependent Variable: Log of Violent Crime Rate

b. Predictors: (Constant), Temperature, Poverty Rate

weak +

not

significant

$\hat{y} = 4.73 + .03$ (poverty rate) + .01(temperature) positive

			Coefficients ^a				
		Unstandardize	d Coefficients	Standardized Coefficients			
Model		В	Std. Error	Beta	t	Sig.	
1	(Constant)	4.727	.314		15.057	.0.0	
	Poverty Rate	.027	.019	.228	1.447	.155	
	Temperature	.013	.007	.285	1.803	.078	

Table 3

OLS Regression Results for Log of the Violent Crime Rate (N=50)

	(1)	(2)	(3)
% poverty rate	.05**		.03
Temperature		.02**	.01t
Constant	5.10***	4.83***	4.73***
R ²	.15**	.17**	.21**

Note: t p<.10 * p<.05 **p<01 ***p<.001

Table 3

OLS Regression Results for Log of the Violent Crime Rate (N=50)

	(1)	(2)	(3)
% poverty rate	.05**		.03
Temperature		.02***	.01t
Constant	5.10***	4.83***	4.73***
R ²	.15**	.17**	.21**

Note: t p<.10 * p<.05 ** p<01 *** p<.001

Table 3 OLS Regression Results for Log of the Violent Crime Rate (N=50) (3) (1)(2)% poverty rate .05** .03 .02** .01t Temperature Constant 5.10*** 4.83*** 4.73*** \mathbb{R}^2 .15** .17** .21**

Note: t p<.10 * p<.05 **p<01 ***p<.001

Table 3

OLS Regression Results for Log of the Violent Crime Rate (N=50)

	(1)	(2)	(3) .03	
% poverty rate	.05**			
Temperature		.02**	.01t	
Constant	5.10***	4.83***	4.73***	
R ²	.15**	.17**	.21**	
Note: t p<.10 * p<.05	**p<01 ***p<.001			

Table 3

OLS Regression Results for Log of the Violent Crime Rate (N=50)

	(1)	(2)	(3) .03	
% poverty rate	.05**			
Temperature		.02**	.01t	
Constant	5.10***	4.83***	4.73***	
R ²	.15**	.17**	.21**	
Note: t p<. <u>10</u> * p<.05	**p<.01 ***p<.001	1		

Table 3

OLS Regression Results for Log of the Violent Crime Rate (N=50)

	(1)	(2)	(3) .03	
% poverty rate	.05**			
Temperature		.02**	.01t	
Constant	5.10***	4.83***	4.73***	
R ²	.15**	.17**	.21**	
Note: t p<. <u>10</u> * p<.05	**p<.01 ***p<.001	1		

Table 3

OLS Regression Results for Log of the Violent Crime Rate (N=50)

	(1)	(2)	(3)	
% poverty rate	.05***		.03	
Temperature		.02**	.01t	
Constant	5.10***	4.83***	4.73***	
R ²	.15**	.17**	.21**	

Note: t p<.10 * p<.05 ** p<01 *** p<.001

A Complex Model

Table 5

OLS Regressions (n=1,069)

Dependent Variable	Pris on Programs		Prison Safety				
	% Work	# Education	# Treatment	Disciplinary Reports	Major Events	As saults on Inmates	Assaults on Staff
Prison ownership (ref=Private)							
Federal	3.83***	0.47***	0.73***	-7.80**	-0.49**	0.37*	-0.02
State	-0.43	-0.02	0.04	1.55	-0.25**	0.06	-0.03
Log of inmates	-0.24*	0.17***	0.12***	1.35*	-0.06*	0.23***	0.12***
Security level (ref=Minimum)							
Maximum	-1.53***	0.08*	0.10t	7.29***	-0.13t	0.52***	0.67***
Medium	-1.09***	0.14***	0.20***	5.39***	-0.14*	0.46***	0.30***
Gender assignment (ref=Female)							
Male	0.26	-0.20***	-0.40***	-2.62t	-0.05	-0.17t	0.16*
Mixed	1.28**	-0.10	-0.32***	-2.32	0.32**	0.34*	0.18
Construction (ref=Unknown)							
Before 1945	-2.50***	0.53***	0.61***	-0.38	-0.52**	-0.18	-0.37*
1945 to 1964	-1.98***	0.78***	0.74***	-3.70	-0.40*	-0.26	-0.22
1965 to 1979	-1.30*	0.58***	0.48***	-6.09*	-0.62***	0.00	-0.31t
1980 or later	-2.18***	0.52***	0.48***	-0.91	-0.53***	-0.10	0.42**
% in work programs (transformed)				-0.39*	0.02t	-0.03**	0.01
# education programs (transformed))			-1.97t	-0.08	-0.08	-0.16**
# treatment programs (transformed)				-5.42***	-0.07t	-0.15**	-0.02
Constant	0.61	-3.54***	.21***	2.34	1.04***	-0.62t	-0.73**
Adjusted R ²	.26***	.34***	.20***.	.21***	.08***	.17***	.16***

tp<.10 * p<.05 ** p<.01 *** p<.001</pre>

How Many Variables?

The minimum of the following:

$$k = \frac{N - 50}{8}$$

$$k = N - 104$$

where N=number of observations and k=number of variables.

Derived from Tabachnick, B.G., & Fidell, L.S. (2007). Using multivariate statistics (5th ed.). Boston: Pearson.

The End

- Multiple regression builds on the principles of simple regression to allow the creation of models with two or more independent variables.
- The need to remove correlational effects among independent variables creates results that are different from simple regression.
- "Once you can do three, you can do them all."