ENHANCING REGRESSION IN SPSS, PART II:

VARIATIONS IN REGRESSION ANALYSIS AND NON-RESPONSE ANALYSIS

Richard Lee Rogers

Last Update: April 2, 2016


Backward Stepwise

- Begin with all variables in model
- Remove the least statistically significant variable
- Continuing removing variables until all remaining variables are statistically significant

Forward Stepwise

- Start with no variables in the model
- Add the most significant variable from the pool of variables selected
- Continue adding until all statistically significant variables are added to the model

STEPWISE REGRESSION

STEPWISE OUTPUT

Coefficients^a

		Unstandardize	d Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	4.736	.703		6.739	.000
	Inpoptot	.035	.048	.086	732	468
	Poverty_Rate	.022	.016	.174	1.366	.178
	Black_Percent	.019	.005	.517	4.169	.000
2	(Constant)	5.222	.230		22.703	.000
	Poverty_Rate	.025	.016	.195	1.580	.121
	Black_Percent	.019	.004	.524	4.249	.000
3	(Constant)	5.570	.067		82.703	.000
	Black_Percent	.022	.004	.605	5.315	.000

a. Dependent Variable: Inviolent

MODEL PERFORMANCE

Model Summary^d

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.636ª	.404	.366	.33810
2	.630 ^b	.397	.372	.33646
3	.605°	.366	.353	.34157

 a. Predictors: (Constant), Black_Percent, Inpoptot, Poverty_Rate

b. Predictors: (Constant), Black_Percent, Poverty_Rate

c. Predictors: (Constant), Black_Percent

d. Dependent Variable: Inviolent

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	3.640	3	1.213	10.615	.000b
	Residual	5.373	47	.114		
	Total	9.013	50			
2	Regression	3.579	2	1.790	15.807	.000°
	Residual	5.434	48	.113		
	Total	9.013	50			
3	Regression	3.296	1	3.296	28.254	.000 ^d
	Residual	5.717	49	.117		
	Total	9.013	50			

a. Dependent Variable: Inviolent

b. Predictors: (Constant), Black_Percent, Inpoptot, Poverty_Rate

c. Predictors: (Constant), Black_Percent, Poverty_Rate

d. Predictors: (Constant), Black_Percent

Why Not Use Stepwise Regression All the Time?

 Analysis is always guided by a theoretical or conceptual framework

- Proper use
 - Exploratory analysis
 - Reduce the number of legitimate variables
 - Multicollinearity

REGRESSION BY REGION

Coefficients^a

			Unstandardize	d Coefficients	Standardized Coefficients		
Region Name	Model		В	Std. Error	Beta	t	Sig.
MVV	1	(Constant)	3.422	1.067		3.207	.009
		Inpoptot	.151	.070	.564	2.161	.056
NE	1	(Constant)	.811	1.084		.748	.479
		Inpoptot	.314	.072	.855	4.364	.003
so	1	(Constant)	8.734	1.550		5.634	.000
		Inpoptot	173	.101	393	-1.712	.106
WE	1	(Constant)	4.978	1.495		3.329	.008
		Inpoptot	.052	.101	.161	.516	.617

a. Dependent Variable: Inviolent

MODEL PERFORMANCE BY REGION

Model Summary^b

Region Name	Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
MVV	1	.564ª	.318	.250	.22510
NE	1	.855ª	.731	.693	.25063
so	1	.393ª	.155	.102	.38826
WE	1	.161ª	.026	071	.39072

a. Predictors: (Constant), Inpoptotb. Dependent Variable: Inviolent

ANOVA^a

Region Name	Model		Sum of Squares	df	Mean Square	F	Sig.
MVV	1	Regression	.237	1	.237	4.669	.056 ^b
		Residual	.507	10	.051		
		Total	.743	11			
NE	1	Regression	1.196	1	1.196	19.044	.003 ^b
		Residual	.440	7	.063		
		Total	1.636	8			
so	1	Regression	.442	1	.442	2.930	.106 ^b
		Residual	2.412	16	.151		
		Total	2.854	17			
WE	1	Regression	.041	1	.041	.266	.617 ^b
		Residual	1.527	10	.153		
		Total	1.567	11			

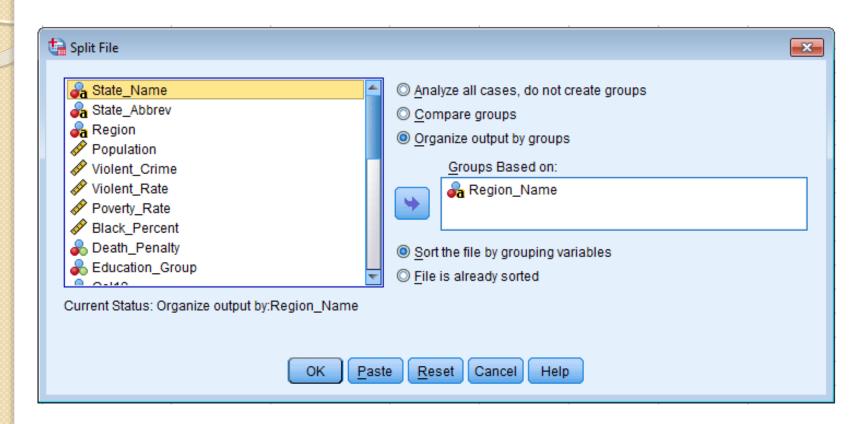
a. Dependent Variable: Inviolent

b. Predictors: (Constant), Inpoptot

APA TABLE

Table 3

Regression Analysis


	All U.S.	Northeast	Midwest	South	West
Log of population	.14*	.31*	.15t	17	.05
Constant	3.64*	.81	3.42*	8.73*	4.98*
R2	.14*	.73*	.32	.16	.03

tp<.10 * p<.05

DATA > SPLIT FILE

<u>V</u> iew	<u>D</u> ata	Transform	Insert	F <u>o</u> rmat	<u>A</u> nalyze		<u>G</u> raphs	<u>U</u> tilities	Ad	
	\overline D	efine <u>V</u> ariable		· 🚣 :						
	3 4 S	et Measurem			· · · · · ·	L				
	<u> </u>	opy Data Prop								
ut	📆 D	efine Dates			ANOV	1				
Log	₩ D	efine <u>M</u> ultiple	Respon	se Sets			um of			
Regress		dentify Duplica	te Cases	5			quares	df		
l <u>e</u> Titli 							1.196		1	
[aiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	⊠ S	ort Cases					.440		7	
(a Var	S 📆	ort Varia <u>b</u> les					1.636		8	
-∰ Mo	T i	ra <u>n</u> spose								
[aaa] AN((aaa) Co(₩ R	estructure					violent 			
- a Res	M	lerge Files			•		npoptot			
👍 Exc Log	₽ <u>A</u>	ggregate								
Regres:	₩ S	plit <u>F</u> ile		Coefficients						
► E Title	<u> Select Cases</u>					ndardized Coefficients				
Acti								3 Std. Error		
 D.,	uon Ma	mo - IIII	1	Coneta	nt\ I		011	1 (101	

SPLIT FILE COMMAND

NON-RESPONSE ANALYSIS

U.S. COUNTY CRIME RATES

 Only 1735 of 3143 counties report a crime rate

• 55.2% response rate

IDENTIFYING MISSING DATA

Recode into Different Variables: Old and New Values	x.
Old Value © <u>V</u> alue:	New Value Value:
⊚ <u>S</u> ystem-missing	© System-missing © Copy old value(s)
System- or user-missingRange:	Ol <u>d</u> > New:
through	SYSMIS> 1 ELSE> 0 Change
Range, LOWEST through value:	Remove
Range, value through HIGHEST:	Output variables are strings Width: 8
All other values	Convert numeric strings to numbers ('5'->5)
Continue	Cancel Help

REGRESSION FOR NON-RESPONDING COUNTIES

Variables in the Equation

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 1 a	poptot	.000	.000	7.566		.006	1.000
	urbanp	007	.001	26.548	1	.000	.993
	popfemalep	.057	.018	10.664	1	.001	1.059
	whitep	.003	.002	2.162	1	.141	1.003
	Constant	-3.057	.873	12.277	1	.000	.047

a. Variable(s) entered on step 1: poptot, urbanp, popfemalep, whitep.

MULTIPLE IMPUTATION

- I. Determine the relationship among using random samples of observations with no missing data (e.g., 10-20% random samples).
- 2. Do Step I several times, e.g., 5-10 times.
- 3. Estimate the value of missing data using each of the models. This gives multiple estimates per missing observation.
- 4. Insert the average of predicted estimates for missing data.
- 5. Do the regular analysis.

TO IMPUTE OR NOT IMPUTE

Against:

- You are making up data.
- The results of the observations lacking missing data.

• For:

- The bias caused by removing the observation may be worse than the harm caused by imputation.
 Sometimes imputation may actually be right.
- The use of multiple imputations creates a range of values. If you believe in the theory of sampling, the average value of the estimates may be a truer estimate than any single estimate.

WHAT WE LEARNED

- Relying on regression output alone is not enough—we need to look beyond the fitted line and examine the residuals and influence statistics.
- Stepwise regression and regressions on subsamples can improve our analysis.
- Missing data can introduce biases into an analysis, some of which can be fixed by using a multiple imputation technique.