ONE-WAY ANOVA IN SPSS

Richard Lee Rogers

One-way ANOVA

- ANalysis Of VAriance
- Bivariate statistic
 - One numeric variable
 - One categorical variable with two or more categories
- A form of the General Linear Model

Example

LnViolentR

					95% Confiden Me	ce Interval for an		
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
Northeast	9	5.5271	.45220	.15073	5.1795	5.8747	4.82	6.06
Midwest	12	5.7229	.25994	.07504	5.5578	5.8881	5.40	6.10
South	16	6.0068	.33469	.08367	5.8285	6.1851	5.29	6.41
West	13	5.7929	.39609	.10985	5.5535	6.0322	5.28	6.41
Total	50	5.7967	.38777	.05484	5.6865	5.9069	4.82	6.41

Descriptives

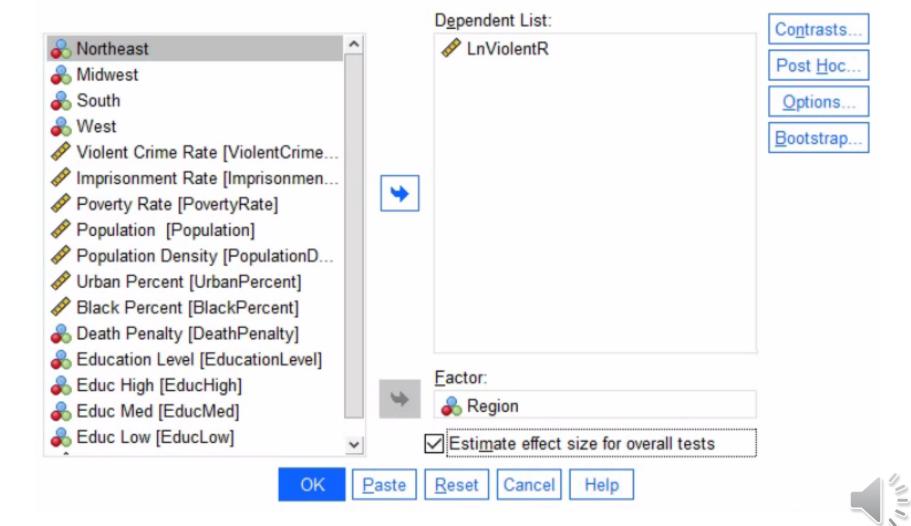
Example

LnViolentR

					95% Confidence Interval for Mean			
	Ν	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
Northeast	9	5.5271	.45220	.15073	5.1795	5.8747	4.82	6.06
Midwest	12	5.7229	.25994	.07504	5.5578	5.8881	5.40	6.10
South	16	6.0068	.33469	.08367	5.8285	6.1851	5.29	6.41
West	13	5.7929	.39609	.10985	5.5535	6.0322	5.28	6.41
Total	50	5.7967	.38777	.05484	5.6865	5.9069	4.82	6.41

Descriptives

Analyze > Compare Means > One-way ANOVA


	· · · · · · · · · · · · · · · · · · ·	 -
	Power Analysis	
1	Reports	
	Descriptive Statistics	
	Bayesian Statistics	
	Ta <u>b</u> les	
	Compare Means	
	General Linear Model	3
	Generalized Linear Models	8
	Mixed Models	3
1	<u>C</u> orrelate	
	<u>R</u> egression	3
	L <u>og</u> linear	
	Classi <u>f</u> y	
	Dimension Reduction	
	Sc <u>a</u> le	

Values	Missing	Columns	Alig
ne	None	14	E Left
ne	None	2	E Left
Indepe	ample T Test nden <u>t</u> -Samples		
Indepe		t-Samples T	Test
Indepe Summ <u>P</u> aired	nden <u>t</u> -Samples ary Independen	t-Samples T	Test
Indepe Summ <u>Paired</u> <u>One-W</u>	nden <u>t</u> -Samples ary Independen -Samples T Tes	t-Samples T	Test
Indepe Summ <u>Paired</u> <u>One-W</u> Cone-S	nden <u>t</u> -Samples ary Independen -Samples T Tes /ay ANOVA	t-Samples T it	

Command Dialog Box

🔄 One-Way ANOVA

 \times

Options

☑ Brown-Forsythe test	
✓ <u>H</u> omogeneity of variance test ✓ <u>B</u> rown-Forsythe test ✓ Welch test	
∠lWelch test	
<u>Means</u> plot	
Missing Values	
Exclude cases analysis by analysis	
O Exclude cases listwise	

Example

LnViolentR

					95% Confidence Interval for Mean			
	Ν	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
Northeast	9	5.5271	.45220	.15073	5.1795	5.8747	4.82	6.06
Midwest	12	5.7229	.25994	.07504	5.5578	5.8881	5.40	6.10
South	16	6.0068	.33469	.08367	5.8285	6.1851	5.29	6.41
West	13	5.7929	.39609	.10985	5.5535	6.0322	5.28	6.41
Total	50	5.7967	.38777	.05484	5.6865	5.9069	4.82	6.41

Descriptives

Test of Homogeneity of Variances

	Tests of Homo	geneity of Va	riances		
		Levene Statistic	df1	df2	Sig.
LnViolentR	Based on Mean	1.246	3	46	.304
	Based on Median	.778	3	46	.513
	Based on Median and with adjusted df	.778	3	40.523	.513
	Based on trimmed mean	1.204	3	46	.319

Test of Homogeneity of Variances

Tests of Homogeneity of Variances						
		Levene Statistic	df1	df2	Sig.	
LnViolentR	Based on Mean	1.246	3	46	.304	
	Based on Median	.778	3	46	.513	
	Based on Median and with adjusted df	.778	3	40.523	.513	
	Based on trimmed mean	1.204	3	46	.319	

Null hypothesis: Variances are similar for each category (homogeneity)

ANOVA

LnViolentR

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	1.426	3	.475	3.679	.019
Within Groups	5.942	46	.129		
Total	7.368	49			

ANOVA Effect Sizes^{a,b}

		Point Estimate	95% Confidence Interva		
			Lower	Upper	
LnViolentR	Eta-squared	.194	.005	.346	
	Epsilon-squared	.141	060	.303	
	Omega-squared Fixed- effect	.138	059	.299	
	Omega-squared Random-effect	.051	019	.125	

 a. Eta-squared and Epsilon-squared are estimated based on the fixed-effect model.

Goodness of Fit

ANOVA

LnViolentR

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	1.426	3	.475	3.679	.019
Within Groups	5.942	46	.129		
Total	7.368	49			
Total	7.368	49			

Total SS= $\Sigma(y_i - \bar{y})^2$ =Distance of every point from the overall mean.

Goodness of Fit

ANOVA

LnViolentR

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	1.426	3	.475	3.679	.019
Within Groups	5.942	46	.129		
Total	7.368	49			

Total SS= $\Sigma(y_i - \bar{y})^2$ =Distance of every point from the overall mean.

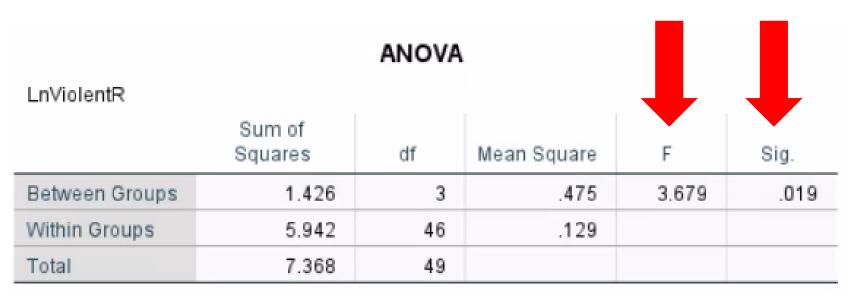
Regression SS= $\Sigma(\hat{y}-\bar{y})^2$ =Distance of the predicted value from the overall mean.

Goodness of Fit

ANOVA

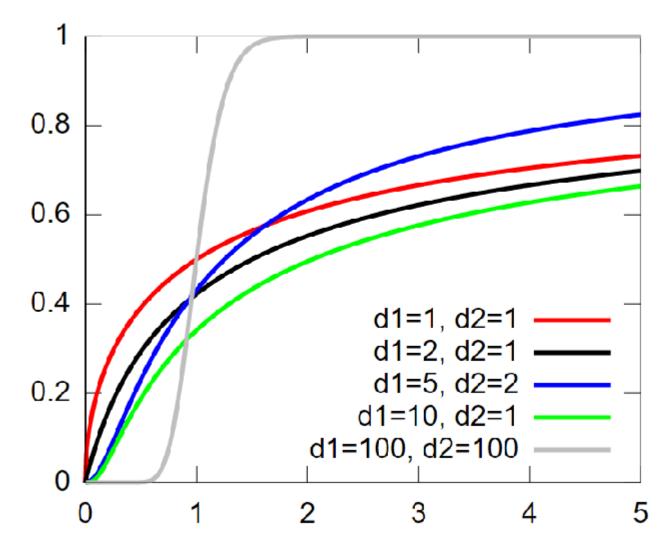
LnViolentR

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	1.426	3	.475	3.679	.019
Within Groups	5.942	46	.129		
Total	7.368	49			

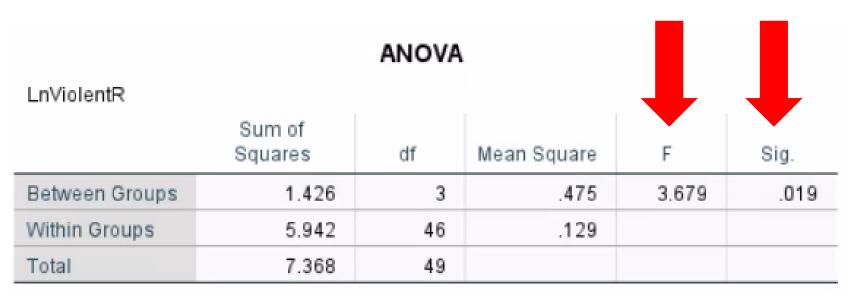

Total SS= $\Sigma(y_i - \overline{y})^2$ =Distance of every point from the overall mean.

Regression SS= $\Sigma(\hat{y}-\bar{y})^2$ =Distance of the predicted value from the overall mean.

Residual sum of squares= $\Sigma(\hat{y}-\bar{y})^2$ =Distance of every point from its group mean.


Testing the Null Hypothesis

Null hypothesis: $\bar{\mu}_1 = \bar{\mu}_2 = \bar{\mu}_3 = \bar{\mu}_4$


Cumulative Distribution Function for F

Source: Wikipedia. Graph is licensed under Creative Commons.

Testing the Null Hypothesis

Null hypothesis: $\bar{\mu}_1 = \bar{\mu}_2 = \bar{\mu}_3 = \bar{\mu}_4$

Alternatives for Heterogeneity of Variances

Robust Tests of Equality of Means

LnViolentR

	Statistic ^a	df1	df2	Sig.
Welch	3.280	3	22.638	.039
Brown-Forsythe	3.466	3	32.135	.027

a. Asymptotically F distributed.

ANOVA

LnViolentR

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	1.426	3	.475	3.679	.019
Within Groups	5.942	46	.129		
Total	7.368	49			

ANOVA Effect Sizes^{a,b}

		Point	95% Confide	nce Interval
		Estimate	Lower	Upper
LnViolentR	Eta-squared	.194	.005	.346
	Epsilon-squared	.141	060	.303
	Omega-squared Fixed- effect	.138	059	.299
	Omega-squared Random-effect	.051	019	.125

 a. Eta-squared and Epsilon-squared are estimated based on the fixed-effect model.

ANOVA

LnViolentR

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	1.426	3	.475	3.679	.019
Within Groups	5.942	46	.129		
Total	7.368	49			

ANOVA Effect Sizes^{a,b}

		Point	95% Confide	nce Interval
		Estimate	Lower	Upper
LnViolentR	Eta-squared	.194	.005	.346
	Epsilon-squared	.141	060	.303
	Omega-squared Fixed- effect	.138	059	.299
	Omega-squared Random-effect	.051	019	.125

 a. Eta-squared and Epsilon-squared are estimated based on the fixed-effect model.

ANOVA

LnViolentR							
		Sum of Squares	df	Mean Squ	are	F	Sig.
Between Gro	oups	1.426	3	1	475	3.679	.019
Within Group	s	5.942	46	1	129		
Total		7.368	49				
		ANOVA		Point			e Interval
LnViolentR	Eta-squa			Point stimate	Lowe	er	Upper
LnViolentR	Eta-squa Epsilon-	ared		Point	Lowe		
LnViolentR	Epsilon-	ared	E	Point stimate .194	Lowe	er 005	Upper .346

 a. Eta-squared and Epsilon-squared are estimated based on the fixed-effect model.

Interpretation of η^2

Small	.0196
Medium	.13
Large	.26

ANOVA

LnViolentR							
		Sum of Squares	df	Mean Squ	iare	F	Sig.
Between Gro	oups	1.426	3		475	3.679	.019
Within Group	os	5.942	46		129		
Total		7.368	49				
		ANOVA		Point			e Interval
I nViolentR	Eta-squa			Point stimate	Lowe	er	Upper
LnViolentR	Eta-squa Epsilon-s	red		Point	Lowe		
LnViolentR	Epsilon-s	red	E	Point stimate .194	Lowe	er 005	Upper .346

 a. Eta-squared and Epsilon-squared are estimated based on the fixed-effect model.

	<u>S-N-K</u>	Waller-Duncan
Bonferroni	<u> <u> </u></u>	Type I/Type II Error Ratio: 100
Sidak	Tu <u>k</u> ey's-b	Dunnett
Sche <u>f</u> fe	Duncan	Control Category : Last
<u>R-E-G-W</u> F	<u>H</u> ochberg's GT2	Test
R-E-G-W Q	Gabriel	\odot 2-sided \odot < Control \odot > Control
🗌 Ta <u>m</u> hane's T2	Dunnett's T <u>3</u>	G <u>a</u> mes-Howell D <u>u</u> nnett's C
Null Hupsthasis to		
Null Hypothesis to		
		a] as the setting in Options
 Use the same 		all reactions and the second

	S-N-K <u>W</u> aller-Duncan	
Bonferroni	Type I/Type II Error Ratio: 100	
Sidak	Tu <u>k</u> ey's-b Dunn <u>e</u> tt	
Sche <u>f</u> fe	Duncan Control Category : Last	
R-E-G-WF	Hochberg's GT2 Test	
		Insteal
	☐ Gabriel Image: Second se	muor
Equal Variances		muor
Equal Variances Ta <u>m</u> hane's T2	Not Assumed Dunnett's T <u>3</u> G <u>a</u> mes-Howell Dunnett's C	muor
Equal Variances Ta <u>m</u> hane's T2 Null Hypothesis t	Not Assumed Dunnett's T <u>3</u> G <u>a</u> mes-Howell D <u>u</u> nnett's C	maor
Equal Variances Ta <u>m</u> hane's T2 Null Hypothesis t Ouse the same	Not Assumed Dunnett's T <u>3</u> G <u>a</u> mes-Howell D <u>u</u> nnett's C test significance level [algha] as the setting in Options	maor
● Use the same	Not Assumed Dunnett's T <u>3</u> G <u>a</u> mes-Howell D <u>u</u> nnett's C test significance level [alpha] as the setting in Options ignificance level [alpha] for the post hoc test	maor

LSD	<u>S-N-K</u>	Waller-Duncan
∠ Bonferroni	<u> </u>	Type I/Type II Error Ratio: 100
S <u>i</u> dak	Tu <u>k</u> ey's-b	Dunn <u>e</u> tt
Sche <u>f</u> fe	Duncan	Control Category : Last
R-E-G-WF	Hochberg's GT2	Test
	I Hochbergs 012	1001
R-E-G-W Q Equal Variances	<u>G</u> abriel	
 □ R-E-G-W <u>Q</u> Equal Variances	<u>G</u> abriel	
 R-E-G-W <u>Q</u> Equal Variances Ta <u>m</u> hane's T2	☐ <u>G</u> abriel Not Assumed ☐ Dunnett's T <u>3</u> [
☐ R-E-G-W <u>Q</u> Equal Variances ☐ Ta <u>m</u> hane's T2 Null Hypothesis t	☐ <u>G</u> abriel Not Assumed ☐ Dunnett's T <u>3</u> [est	
☐ R-E-G-W <u>Q</u> Equal Variances ☐ Ta <u>m</u> hane's T2 Null Hypothesis t	☐ <u>G</u> abriel Not Assumed ☐ Dunnett's T <u>3</u> [est	
□ R-E-G-W Q Equal Variances □ Ta <u>m</u> hane's T2 Null Hypothesis t	☐ <u>G</u> abriel Not Assumed ☐ Dunnett's T <u>3</u> [est	● <u>2</u> -sided ● < Control ● > Control Games-Howell □ Dunnett's C

	<u>S-N-K</u>	<u>W</u> aller-Duncan
✓ Bonferroni	<u> </u>	Type I/Type II Error Ratio: 100
S <u>i</u> dak	Tu <u>k</u> ey's-b	Dunn <u>e</u> tt
Sche <u>f</u> fe	Duncan	Control Category : Last
<u>R-E-G-W</u> F	<u>H</u> ochberg's GT2	Test
R-E-G-W Q Equal Variances	Gabriel	
	Not Assumed	
 Equal Variances Ta <u>m</u> hane's T2	Not Assumed	
Equal Variances Ta <u>m</u> hane's T2 Null Hypothesis t	Not Assumed	Games-Howell Dunnett's C
Equal Variances Ta <u>m</u> hane's T2 Null Hypothesis t Use the same	Not Assumed Dunnett's T3 est significance level [alph	G <u>a</u> mes-Howell Dunnett's C na] as the setting in Options
Equal Variances Ta <u>m</u> hane's T2 Null Hypothesis t Use the same	Not Assumed	G <u>a</u> mes-Howell Dunnett's C na] as the setting in Options

Post Hoc Tests

Multiple Comparisons

Dependent Variable: LnViolentR

Bonferroni

		Mean Difference (I-			95% Confidence Interval	
(I) Region	(J) Region	J)	Std. Error	Sig.	Lower Bound	Upper Bound
5	Midwest	19578	.15848	1.000	6328	.2412
	South	47966	.14975	.015	8926	0668
	West	26574	.15585	.570	6954	.1640
Midwest	Northeast	.19578	.15848	1.000	2412	.6328
	South	28388	.13725	.266	6623	.0946
	West	06996	.14388	1.000	4667	.3267
South	Northeast	.47966	.14975	.015	.0668	.8926
	Midwest	.28388	.13725	.266	0946	.6623
	West	.21391	.13420	.707	1561	.5839
West	Northeast	.26574	.15585	.570	1640	.6954
	Midwest	.06996	.14388	1.000	3267	.4667
	South	21391	.13420	.707	5839	.1561

Post Hoc Tests Multiple Comparis Dependent Variable: LnViolent Bonferroni Mean 95% Confidence Interval Difference (I-Upper Bound Std. Error Sig. Lower Bound J) (I) Region (J) Region Northeast Midwest -.19578.15848 1.000 .2412 -.6328-.47966 South .14975 .015 -.8926 -.0668 .570 West -.26574.15585 -.6954 .1640 Midwest Northeast .19578 .15848 1.000 -.2412 .6328 South -.28388 .13725 .266 -.6623 .0946 West 1.000 .3267 -.06996 .14388 -.4667 .47966 South Northeast .14975 .015 .0668 .8926 Midwest 13725 .266 .28388 -.0946.6623 West .21391 .13420 .707 -.1561 .5839 Northeast West .26574 .15585 .570 -.1640 .6954 Midwest .06996 .14388 1,000 -.3267 .4667 South -.21391.13420 .707 -.5839 .1561

*. The mean difference is significant at the 0.05 level.

Post Hoc Tests Multiple Comparis Dependent Variable: LnViolent Bonferroni Mean 95% Confidence Interval Difference (I-Upper Bound Std. Error Sig. Lower Bound J) (I) Region (J) Region Northeast Midwest -.19578.15848 1.000 .2412 -.6328-.47966 South .14975 .015 -.8926 -.0668 .15585 .570 West -.26574-.6954 .1640 Midwest Northeast .19578 .15848 1.000 -.2412 .6328 South -.28388 .13725 .266 -.6623 .0946 West 1,000 -.06996 .14388 -.4667 .3267 .47966 South Northeast .14975 .015 .0668 .8926 .13725 .266 -.0946 .6623 Midwest .28388 West .21391 .13420 .707 -.1561 .5839 Northeast .570 West .26574 .15585 -.1640 .6954 Midwest 1,000 .06996 .14388 -.3267 .4667 South -.21391.13420 .707 -.5839 .1561

*. The mean difference is significant at the 0.05 level.

Syntax

```
ONEWAY LnViolentR BY Region

/ES=OVERALL

/STATISTICS DESCRIPTIVES HOMOGENEITY BROWNFORSYTHE WELCH

/MISSING ANALYSIS

/CRITERIA=CILEVEL(0.95)

/POSTHOC=BONFERRONI ALPHA(0.05).
```


Issues in Use of One-way ANOVA

Possible Uses

- Definitely use with a categorical variable with 3 or more categories
- Use judiciously with a categorical variable with 2 or more categories
- Use to reduce comparison plots to reduce the number of categories in a categorical variable. (Reduces degrees of freedom / makes analysis simpler)

Controversies

- Reservations about the test for homogeneity
- Use with binary dependent variables

The End

- ANalysis Of VAriance
- Bivariate statistic
 - One numeric variable
 - One categorical variable with two or more categories
- A form of the General Linear Model

