INDEPENDENT SAMPLE T-TESTS

Richard Lee Rogers

What is a t-test

- T-tests are used when one variable is numeric and the other variable has two categories. The test determines whether the distance between the two means is statistically significant.
- t is the same Student's t used in determining a confidence interval
- Elements of inference
 - Magnitude is expressed as an absolute number and is not standardized.
 - Direction not present in a traditional sense, but we can speak of one group being "larger" or "higher" than another group.
 - Statistical significance of the distance is present.

The T-test: A Small Difference

The T-test: A Large Difference

Analyze > Compare Means > Independent Samples T Test

<u>T</u> ransform	<u>A</u> nalyze	Direct <u>M</u> arketing	<u>G</u> raphs	s <u>U</u> tilities	Add- <u>o</u> ns	<u>W</u> indow	<u>H</u> elp	
	Re <u>p</u> D <u>e</u> s	orts criptive Statistics	* *		*,		- S	\$
	Ta <u>b</u>	les	•					Visible
TNAME	Con	npare Means	•	Means	s			RATE
	<u>G</u> eneral Linear Model Generali <u>z</u> ed Linear Models		•	🚺 One- <u>S</u>		648.0		
			els ▶	🔝 Indepe	enden <u>t</u> -Sam	ples T Tes	t	340.0
	Mixe	ed Models	P.	<u> P</u> aired		572.0		
	<u>C</u> on Roa	relate	P L	🚺 <u>O</u> ne-W		552.0		
		linear	E L	4 411			439.0	
	L <u>o</u> g Nou	inical Iral Natwarka		4 320	320		445.0	
	Neu	inal Networks		1		273		376.0
	Clas	ssity	•	3		<mark>559</mark>		443.0
Jumbia	<u>D</u> im	ension Reduction	•	3		1202		

Command Dialog Box

Command Dialog Box

Command Dialog Box

Command Dialog Box after Define Groups

Table 1: Descriptive Statistics

Group Statistics

	South	Ν	Mean	Std. Deviation	Std. Error Mean
Log of Violent Crime Rate	South	17	6.0694	.41800	.10138
	Non-South	34	5.6961	.37603	.06449

Table 2: Independent Samples Test

Independent Samples Test

	Levene's Test Varia	for Equality of inces		t-test for Equality of Means						
							Mean	Std. Error	95% Confidence Interval of th Difference	
		F	Sig.	t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper
Log of Violent Crime Rate	Equal variances assumed	.022	.883	3.221	49	.002	.37334	.11592	.14040	.60629
	Equal variances not assumed			3.107	29.246	.004	.37334	.12015	.12769	.61900

Levine's Test

	Levene's Test for Equally of Variances		
		F	
		F	Sig.
Log of Violent Crime Rate	Equal variances assumed	.022	.883
	Equal variances not assumed		

p ≥ .05, then the variances equal
p < .05, then the variances not equal

T-test for Equality of Means

	t-test for Equality of Means								
			Mean	Std. Error	95% Confidence Interval of the Difference				
t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper			
3.221	49	.002	.37334	.11592	.14040	.60629			
3.107	29.246	.004	.37334	.12015	.12769	.61900			

T-test for Equality of Means: t

	t-test for Equality of Means									
			Mean	Std. Error	95% Confidence Interval of the Difference					
t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper				
3.221	49	.002	.37334	.11592	.14040	.60629				
3.107	29.246	.004	.37334	.12015	.12769	.61900				

T-test for Equality of Means: df

		t-test for Equality of Means								
			Mean	Std. Error	95% Confidence Differ	e Interval of the ence				
t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper				
3.221	49	.002	.37334	.11592	.14040	.60629				
3.107	29.246	.004	.37334	.12015	.12769	.61900				

T-test for Equality of Means: Significance

statistical significance of the test

			t-test for Equality	ofMeans			
			Mean	Std. Error	95% Confidence Interval of the Difference		
t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper	
3.221	49	.002	.37334	.11592	.14040	.60629	
3.107	29.246	.004	.37334	.12015	.12769	.61900	

T-test for Equality of Means: Mean Difference

magnitude (not standardized)

				t-tes r Equality	ofMeans		
				Mean	Std Frror	95% Confidence Interval of the Difference	
_	t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper
	3.221	49	.002	.37334	.11592	.14040	.60629
	3.107	29.246	.004	.37334	.12015	.12769	.61900

T-test for Equality of Means: Standard Error

magnitude (not standardized)

			of Mea			
			Mean	Std. Error	95% Confidence Interval of th Difference	
t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper
3.221	49	.002	.37334	.11592	.14040	.60629
3.107	29.246	.004	.37334	.12015	.12769	.61900

T-test for Equality of Means: Confidence Interval

			Mean	Std. Error	95% nidenc Differ	idence Integration of the Difference	
t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper	
3.221	49	.002	.37334	.11592	.14040	.60629	
3.107	29.246	.004	.37334	.12015	.12769	.61900	

Null Hypothesis

Formula: Equal Variances

$$\overline{x_1} - \overline{x_2}$$
$$t = -----$$
$$S_{x_1 x_2} \sqrt{2/n}$$

where
$$S_{x_1x_2} = \sqrt{\frac{(n_1 - 1)s_{x_1}^2 (n_2 - 1)s_{x_2}^2}{n_1 + n_2 - 2}}$$

Formula: Unequal Variances

$$x_{1} - x_{2}$$

t =
$$S_{x_{1}x_{2}} \sqrt{\left(\frac{1}{n_{1}}\right) + \left(\frac{1}{n_{2}}\right)}$$

where
$$S_{x_1x_2} = \sqrt{\frac{(n_1 - 1)s_{x_1}^2 (n_2 - 1)s_{x_2}^2}{n_1 + n_2 - 2}}$$

Levine's Test Controversy

- Levine's test is not universally accepted and not included in some statistical software.
- The issue is that the statistical significance number masks underlying aspects of the distribution of each group that should be studied more closely, much like the way we study skewness and kurtosis.
- Some statisticians assert that the Levine's test should not substitute for one's own judgment.
- If one cannot tell whether to assume equal or unequal variances, assume unequal.

Effect Size: Cohen's d

$$d = \frac{Mean_2 - Mean_1}{SD_{pooled}}$$

where the pooled standard deviation is

$$SD_{pooled} = \sqrt{((SD_1^2 + SD_2^2)/2)}$$

Interpretation

- .2 Weak
- .5 Medium
- .8 Strong

$$d = \frac{5.70 - 6.07}{.40} = \frac{.37}{.40} = .93$$

where the pooled standard deviation is $\sqrt{((.42^2 + .38_2^2)/2)}$

The End

- T-tests are used when one variable is numeric and the other variable has two categories.
- The test determines whether the distance between the two means is statistically significant.
- A standardized effect size can be obtained using Cohen's d.
- Direction does not exist in a traditional sense, though one group can be said to be "larger" or "higher" than another.