SIMPLE OLS REGRESSION, PART I: THE EQUATION OF A LINE

Richard Lee Rogers Last Update: February 14, 2016

Example

Analyze > Regression > Linear

<u>T</u> ransform	<u>A</u> nalyze	Direct <u>M</u> arketing	<u>G</u> raphs	s <u>U</u> tilities	Add- <u>o</u> ns	<u>W</u> ine	dow <u>H</u> el	р	
, 🗠	_	orts criptive Statistics	4	A A	*;		- S	5	[
orida	Ta <u>b</u>	les	•					Visi	ble:
TNAME	Con	npare Means	•	EG	SOUTH		VIOLEN	TRATE	IM
	General Linear Model		•						
	Gen	eralized Linear Mod	dels 🕨	3		1		420	
	<u>o</u> on oracio		•	4		0		606	
			•	4		0		406	
			•		natio Linear M	- <u>1</u>		481	
	_	linear	•		natic Linear M	odell	ng	411	
				Linea	ar			320	
		ral Net <u>w</u> orks		🖌 <u>C</u> urve	e Estimation			273	
		ssify	•	腸 Partia	al Lea <u>s</u> t Squar	es		559	
	<u>D</u> im	ension Reduction	•	Binar	y Logistic			515	
	Sc <u>a</u>	le	•		_	_		373	
	<u>N</u> on	parametric Tests	•		nomial Logisti			287	
	Fore	Forecasting		Gr <u>d</u> inal <u>P</u> robit				201	
	Survival		•				429		
	Mult	inle Resnonse	ь.	B Nonli	near			333	

Analyze > Regression > Linear

<u>T</u> ransform	n <u>A</u> nalyze	<u>U</u> tilities	<u>W</u> indows	<u>H</u> e	lp				
D A	🗧 🔂 🖸 es	criptive Sta	tistics		×				
	🖣 😡 Cor	npare <u>M</u> ear	ns		•				
		variate Ana	lysis				[]	()	
S	RI D Biva	ariate Corre	lation			TRA'	IMPRISONR	POVERTYRA	POPL
AL	So	<u>K</u> -Means Cluster Factor <u>A</u> nalysis				420	648.0	19.0	4
AK 1	w					606	340.0	10.5	
AZ 1	W -	ability				406	572.0	19.0	6
					{			0.5	
AF S	Sc 🦾 Reg	ression			•	-	<u>L</u> inear	9.5	2
C4 V	W L <u>ulu</u> , <u>N</u> or	n-Parametri	ic Statistics		F	_	<u>B</u> inary Logisti	^с 6.6	37
CC	W 🗠 ROG	C ROC Cur <u>v</u> e				320	445.0	13.5	5
1 13	Northeast	ortheast 1 0				273	376.0	10.9	3
DE S	South		3	1		559	443.0	11.9	!

Command Dialog Box

Command Dialog Box

Command Dialog Box

Output

Variables Entered/Removed^a

Model	Variables Entered	Variables Removed	Method
1	Poverty Rate ^b		Enter

a. Dependent Variable: Log of Violent Crime Rate

b. All requested variables entered.

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.391 ^a	.152	.135	.36130

a. Predictors: (Constant), Poverty Rate

ANOVA^a

Model	Sum of Squares	df	Mean Square	F	Sig.
1 Regression	1.127	1	1.127	8.637	.005 ^b
Residual	6.266	48	.131		
Total	7.393	49			

a. Dependent Variable: Log of Violent Crime Rate

b. Predictors: (Constant), Poverty Rate

_

Coefficients^a

		Unstandardize	d Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	5.097	.243		20.981	.000
	Poverty Rate	.046	.016	.391	2.939	.005

Parameters of the Line

Coefficients^a

		Unstandardize	d Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	5.097	.243		20.981	.000
	Poverty Rate	.046	.016	.391	2.939	.005

Parameters of the Line: B_o

b Coefficients^a Standardized Unstandardized Coefficients Coefficients В Std. Error Beta Sig. t Model 1 💊 (Constant) 5.097 .243 20.981.000 Poverty Rate .046 .016 2.939 .005 .391

Parameters of the Line: B₁

b	1						
				Coefficients ^a			
			Unstandardize	d Coefficients	Standardized Coefficients		
Μ	Iddel		В	Std. Error	Beta	t	Sig.
1		(Constant)	5.097	.243		20.981	.000
	V	Poverty Rate	.046	.016	.391	2,939	.005

Coefficients^a

		Unstandardized	Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	5.097	.243		20.981	.000
	Poverty Rate	.046	.016	.391	2.939	.005

Coefficients^a

		Unstandardized	Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	5.097	.243		20.981	.000
	Poverty Rate	.046	.016	.391	2.939	.005

a. Dependent Variable: Log of Violent Crime Rate

 $\hat{y} = b_0 + b_1 x_1 = 5.10 + .05$ (poverty rate)

Coefficients^a

		Unstandardized	Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	5.097	.243		20.981	.000
	Poverty Rate	.046	.016	.391	2.939	.005

a. Dependent Variable: Log of Violent Crime Rate

$\hat{y} = b_0 + b_1 x_1 = 5.10 + .05$ (poverty rate)

b₁ =
$$\frac{\text{covariance of x and y}}{\text{variance of x}} = \frac{\Sigma(x_i - \bar{x})(y_i - \bar{y})}{\Sigma(x_i - \bar{x})^2}$$

Coefficients^a

		Unstandardized	Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	5.097	.243		20.981	.000
	Poverty Rate	.046	.016	.391	2.939	.005

a. Dependent Variable: Log of Violent Crime Rate

 $\hat{y} = b_0 + b_1 x_1 = 5.10 + .05$ (poverty rate)

$$\mathbf{b_1} = \frac{\text{covariance of x and y}}{\text{variance of x}} = \frac{\mathbf{\Sigma}(\mathbf{x}_i - \bar{\mathbf{x}})(\mathbf{y}_i - \bar{\mathbf{y}})}{\mathbf{\Sigma}(\mathbf{x}_i - \bar{\mathbf{x}})^2} = \mathbf{r}_{\mathbf{xy}} \frac{\mathbf{s}_{\mathbf{y}}}{\mathbf{s}_{\mathbf{x}}}$$

What the Slope Tells Us

- Sign of b₁ is the direction of the relationship.
- The magnitude of b₁ is unstandardized
- In this analysis
 - The relationship is positive
 - Magnitude: The log of the violent crime rate increases .05 for every percent increase in the poverty rate

Standard Error of the Beta Coefficient

Coefficients^a

		Unstandardize	d Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	5.097	.243		20.981	.000
	Poverty Rate	.046	.016	.391	2.939	.005

Standardized Beta

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	5.097	.243		20.981	.000
	Poverty Rate	.046	.016	.391	2.939	.005

Statistical Significance

Coefficients^a

		Unstandardize	d Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	5.097	.243		20.981	.000
	Poverty Rate	.046	.016	.391	2.939	.005

a. Dependent Variable: Log of Violent Crime Rate

Null Hypotheses: $b_0 = 0$ $b_1 = 0$

t

Coefficients^a

U		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	5.097	.243		20.981	.000
	Poverty Rate	.046	.016	.391	2.939	.005

Elements of An Inferential Statistic

Elements in the parameter of a line are associated with B1

- Direction: sign
- Unstandardized magnitude: beta (slope)
- Standardized magnitude: standardized beta
- Statistical significance

Constant usually has no substantive bearing on the relationship

Example results

- The relationship is positive
- The relationship is moderate (standardized magnitude: b_1 =.39)
- Statistically significant
- The log of violent crime rate increases .05 for each percent increase in the poverty rate (unstandardized beta: b_o=.05)

