SIMPLE OLS REGRESSION, PART I: THE EQUATION OF A LINE

Richard Lee Rogers
Last Update: February 14, 2016

Example

Analyze > Regression > Linear

Analyze > Regression > Linear

Command Dialog Box

Command Dialog Box

Command Dialog Box

Output

Variables Entered/Removed ${ }^{\text {a }}$

Model	Variables Entered	Variables Removed	Method
1	Poverty Rate $^{\text {b }}$		Enter

a. Dependent Variable: Log of Violent Crime

Rate
b. All requested variables entered

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.391^{\mathrm{a}}$.152	.135	.36130

a. Predictors: (Constant), Poverty Rate

ANOVA ${ }^{\text {a }}$					
Model	Sum of Squares	df	Mean Square	F	Sig.
1 Regression	1.127	1	1.127	8.637	. $005^{\text {b }}$
Residual	6.266	48	. 131		
Total	7.393	49			

a. Dependent Variable: Log of Violent Crime Rate
b. Predictors: (Constant), Poverty Rate

Coefficients ${ }^{\text {a }}$

Model		Unstandardized Coefficients		$\begin{gathered} \begin{array}{c} \text { Standardized } \\ \text { Coefficients } \end{array} \\ \hline \text { Beta } \\ \hline \end{gathered}$	t	Sig.
		B	Std. Error			
1	(Constant)	5.097	. 243		20.981	. 000
	Poverty Rate	. 046	. 016	.391	2.939	. 005

Parameters of the Line

Coefficients ${ }^{\text {a }}$

Model	Unstandardized Coefficients		Standardized Coefficients	t	Sig.
	B	Std. Error	Beta		
1 (Constant)	5.097	243		20.981	. 000
Poverty Rate	. 046	016	391	2.939	. 005

a. Dependent Variable: Log of Violent Crime Rate

Parameters of the Line: $B_{\text {o }}$

b。
Coefficients ${ }^{\text {a }}$

Movel	Unstandardized Coefficients		Standardized Coefficients	t	Sig.
	B	Std. Error	Beta		
$1 \times /$ (Constant)	5.097	. 243		20.981	000
Poverty Rate	. 046	. 016	391	2.939	005

a. Dependent Variable: Log of Violent Crime Rate

Parameters of the Line: B_{1}

b_{1}
Coefficients ${ }^{\text {a }}$

Model	Unstandardized Coefficients		Standardized Coefficients	t	Sig.
	B	Std. Error	Beta		
1 / $\begin{aligned} & \text { (Constant) } \\ & \text { Povertv Rate }\end{aligned}$	$\begin{array}{r} 5.097 \\ .046 \\ \hline \end{array}$	$\begin{array}{r} .243 \\ .016 \\ \hline \end{array}$	391	$\begin{array}{r} 20.981 \\ 2.939 \\ \hline \end{array}$	$\begin{aligned} & .000 \\ & .005 \end{aligned}$

a. Dependent Variable: Log of Violent Crime Rate

The Equation of the Line

Coefficients ${ }^{\text {a }}$					
Model	Unstandardized	Coefficients	Standardized Coefficients	t	Sig.
	B	Std. Error	Beta		
1 (Constant)	5.097	.243		20.981	. 000
Poverty Rate	. 046	. 016	391	2.939	005

a. Dependent Variable: Log of Violent Crime Rate

The Equation of the Line

	Coefficients ${ }^{\text {a }}$				
Model	Unstandardized	Coefficients	Standardized Coefficients	t	Sig.
	B	Std. Error	Beta		
1 (Constant)	5.097	.243		20.981	. 000
Poverty Rate	. 046	. 016	. 391	2.939	. 005

a. Dependent Variable: Log of Violent Crime Rate

$$
\hat{y}=b_{o}+b_{1} x_{1}=5.10+.05(\text { poverty rate })
$$

The Equation of the Line

Coefficients ${ }^{\text {a }}$					
Model	Unstandardized	Coefficients	Standardized Coefficients	t	Sig.
	B	Std. Error	Beta		
1 (Constant)	5.097	.243		20.981	. 000
Poverty Rate	. 046	. 016	391	2.939	005

a. Dependent Variable: Log of VIolent Crime Rate

$$
\begin{aligned}
& \hat{y}=b_{0}+b_{1} x_{1}=5.10+.05(\text { poverty rate) } \\
& b_{1}=\frac{\text { covariance of } x \text { and } y}{\text { variance of } x}=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}
\end{aligned}
$$

The Equation of the Line

Coefficients ${ }^{\text {a }}$					
Model	Unstandardized	Coefficients	Standardized Coefficients	t	Sig.
	B	Std. Error	Beta		
1 (Constant)	5.097	.243		20.981	. 000
Poverty Rate	. 046	. 016	391	2.939	005

a. Dependent Variable: Log of VIolent Crime Rate

$$
\begin{gathered}
\hat{y}=b_{o}+b_{1} x_{1}=5.10+.05(\text { poverty rate }) \\
b_{1}=\frac{\text { covariance of } x \text { and } y}{\text { variance of } x}=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}=r_{x y} \frac{s_{y}}{s_{x}}
\end{gathered}
$$

What the Slope Tells Us

- Sign of b_{1} is the direction of the relationship.
- The magnitude of b_{1} is unstandardized
- In this analysis
- The relationship is positive
- Magnitude: The log of the violent crime rate increases .05 for every percent increase in the poverty rate

Standard Error of the Beta Coefficient

Coefficients ${ }^{\text {a }}$					
Model	Unstandardize	Coefficients	Standardized Coefficients	t	Sig.
	B	Std. Error	Beta		
1 (Constant)	5.097	. 243		20.981	. 000
Poverty Rate	. 046	. 016	391	2.939	005

a. Dependent Variable: Log of Violent Crime Rate

Standardized Beta

Model	Unstandardized Coefficients		Standardized Coefficients	t	Sig.
	B	Std. Error	Beta		
1 (Constant)	5.097	. 243		20.981	. 000
Poverty Rate	. 046	. 016	. 391	2.939	. 005

a. Dependent Variable: Log of Violent Crime Rate

Statistical Significance

Coefficients ${ }^{\text {a }}$

Model	Unstandardized Coefficients		Standardized Coefficients	t	Sig.
	B	Std. Error	Beta		
1 (Constant)	5.097	.243		20.981	. 000
Poverty Rate	. 046	. 016	.391	2.939	. 005

a. Dependent Variable: Log of Violent Crime Rate

Null Hypotheses:

$$
\begin{aligned}
& b_{o}=0 \\
& b_{1}=0
\end{aligned}
$$

Coefficients ${ }^{\text {a }}$

Model	Unstandardized Coefficients		Standardized Coefficients	t	Sig.
	B	Std. Error	Beta		
1 (Constant)	5.097	243		20.981	. 000
Poverty Rate	. 046	016	.391	2.939	. 005

a. Dependent Variable: Log of Violent Crime Rate

Elements of An Inferential Statistic

Elements in the parameter of a line are associated with B1

- Direction: sign
- Unstandardized magnitude: beta (slope)
- Standardized magnitude: standardized beta
- Statistical significance

Constant usually has no substantive bearing on the relationship

Example results

- The relationship is positive
- The relationship is moderate (standardized magnitude: $b_{1}=.39$)
- Statistically significant
- The log of violent crime rate increases .05 for each percent increase in the poverty rate (unstandardized beta: $b_{0}=.05$)

